ECE-223, Solution for Assignment #8

Digital Design, M. Mano, 3rd Edition, Chapter 7

7.9) A DRAM chip uses two dimensional address multiplexing. It has 13 common address pins with the row address having 1 bit longer than column address. What is the capacity of the memory?

13+12 = 25 Address lines, => Memory Capacity = 2^{25} words

7.12) A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is as follows:

- a) 000011101010
- b) 101110000110
- c) 101111110100

a)

 $C_{1}(1,3,5,7,9,11) = 0,0,1,1,1,1 = 0$ $C_{2}(2,3,6,7,10,11) = 0,0,1,1,0,1 = 1$ $C_{4}(4,5,6,7,12) = 0,1,1,1,0 = 1$ $C_{8}(8,9,10,11,12) = 0,1,0,1,0 = 0$ $\Rightarrow C = 0110$ (Data-bits are 3 5 6 7 9 10 11 12) Error in bit 6 => Corrected 8-bit data = 0 1 0 1 1 0 1 0

b)

 $C_{1}(1,3,5,7,9,11) = 1,1,1,0,0,1 = 0$ $C_{2}(2,3,6,7,10,11) = 0,1,0,0,1,1 = 1$ $C_{4}(4,5,6,7,12) = 1,1,0,0,0 = 0$ $C_{8}(8,9,10,11,12) = 0,0,1,1,0 = 0$ $\Rightarrow C = 0010 (Parity bit)$ (Data-bits are 3 5 6 7 9 10 11 12) Error in bit 2 => Corrected 8-bit data = 1 1 0 0 0 1 1 0

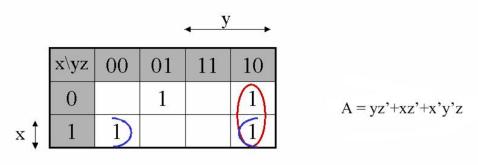
c)

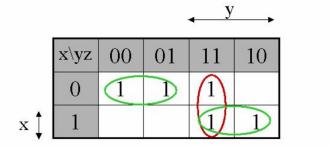
⇒ C = 0000 No Error 8-bit Data = 1 1 1 1 0 1 0 0 7.19) Tabulate the truth table for an 8×4 ROM that implements the Boolean functions

A (x, y, z) = $\sum (1, 2, 4, 6)$ B (x, y, z) = $\sum (0, 1, 6, 7)$ C (x, y, z) = $\sum (2, 6)$ D (x, y, z) = $\sum (1, 2, 3, 5, 7)$

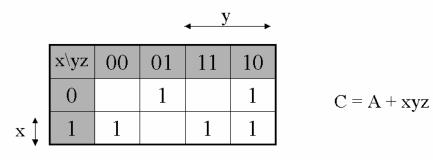
	Inputs		Outputs				
Х	У	Z	А	В	С	D	
0	0	0	0	1	0	0	
0	0	1	1	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	0	0	1	
1	0	0	1	0	0	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	0	1	

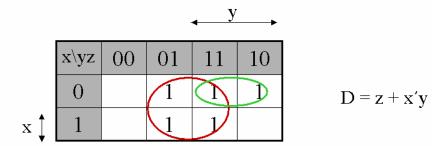
7.22) List the PLA programming table for the BCD to excess-3 code convert whose Boolean function are simplified in Fig. 4-3.


From Fig.4-3


	Product		Inp	uts		Outputs			
	term	А	В	С	D	W	Х	У	Z
Α	1	1	-	-	-	1	-	-	-
BC	2	I	1	1	-	1	1	-	-
BD	3	I	1	-	1	1	1	-	-
B'C'D'	4	-	0	0	0	-	1	-	-
CD	5	-	-	1	1	-	-	1	-
C'D'	6	-	-	0	0	-	-	1	-
D'	7	-	-	-	0	-	-	-	1
						Т	С	Т	Т

Product		AND	Inputs		Outroute
Term	Α	В	C	D	Outputs
1	1	-	-	-	
2	-	1	1	-	w = A + BC + BD
3	-	1	-	1	
4	-	0	1	-	
5	-	0	-	1	$\mathbf{x} = \mathbf{B'C} + \mathbf{B'D} + \mathbf{BC'D'}$
6	-	1	0	0	
7	-	-	1	1	
8	-	-	0	0	y = CD + C'D'
9	-	-	-	-	
10	-	-	-	0	
11	-	-	-	-	z = D'
12	-	-	-	-	


7.23) Repeat problem 7.22 using a PAL.


7.24) The following is a truth table of a 3-input, 4-output combinational circuit. Tabulate the PAL programming table for the circuit and mark the fuse map in a PAL diagram similar to the one shown in Fig. 7-17.

$$\mathbf{B} = \mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z} + \mathbf{x}'\mathbf{y}'$$

Product		AND	Inputs		Outputs
Term	Х	У	Z	А	Outputs
1	-	1	0	-	
2	1	-	0	-	$\mathbf{A} = \mathbf{y}\mathbf{z}' + \mathbf{x}\mathbf{z}' + \mathbf{x}'\mathbf{y}'\mathbf{z}$
3	0	0	1	-	
4	0	0	-	-	
5	1	1	-	-	$\mathbf{B} = \mathbf{x'}\mathbf{y'} + \mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z}$
6	-	1	1	-	
7	-	-	-	1	
8	1	1	1	-	C = A + xyz
9	-	-	-	-	
10	_	-	1	-	
11	0	1	-	-	$\mathbf{D} = \mathbf{z} + \mathbf{x'}\mathbf{y}$
12	_	-	-	-	