ECE-223, Solution for Assignment \#8

Digital Design, M. Mano, $3^{\text {rd }}$ Edition, Chapter 7

7.9) A DRAM chip uses two dimensional address multiplexing. It has 13 common address pins with the row address having 1 bit longer than column address. What is the capacity of the memory?
$13+12=25$ Address lines, $=>$ Memory Capacity $=2^{25}$ words
7.12) A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is as follows:
a) 000011101010
b) 101110000110
c) 101111110100
a)
$\mathrm{C}_{1}(1,3,5,7,9,11)=0,0,1,1,1,1=0$
$\mathrm{C}_{2}(2,3,6,7,10,11)=0,0,1,1,0,1=1$
$\mathrm{C}_{4}(4,5,6,7,12)=0,1,1,1,0=1$
$\mathrm{C}_{8}(8,9,10,11,12)=0,1,0,1,0=0$
$\Rightarrow C=0110$
(Data-bits are 356791011 12)
Error in bit 6 => Corrected 8-bit data $=01011010$
b)
$\mathrm{C}_{1}(1,3,5,7,9,11)=1,1,1,0,0,1=0$
$\mathrm{C}_{2}(2,3,6,7,10,11)=0,1,0,0,1,1=1$
$\mathrm{C}_{4}(4,5,6,7,12)=1,1,0,0,0=0$
$\mathrm{C}_{8}(8,9,10,11,12)=0,0,1,1,0=0$
$\Rightarrow C=0010$ (Parity bit)
(Data-bits are 356791011 12)
Error in bit 2 => Corrected 8-bit data $=11000110$
c)
$\Rightarrow C=0000$
No Error
8-bit Data = 11110100
7.19) Tabulate the truth table for an 8×4 ROM that implements the Boolean functions

A $(x, y, z)=\sum(1,2,4,6)$
B $(x, y, z)=\sum(0,1,6,7)$
$C(x, y, z)=\sum(2,6)$
$\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,3,5,7)$

Inputs			Outputs				
x	y	z	A	B	C		
0	0	0	0	1	0	0	
0	0	1	1	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	0	0	1	
1	0	0	1	0	0	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	0	1	

7.22) List the PLA programming table for the BCD to excess-3 code convert whose Boolean function are simplified in Fig. 4-3.

From Fig.4-3
$\mathrm{w}=\mathrm{A}+\mathrm{BC}+\mathrm{BD}, \mathrm{w}^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
$\mathrm{x}=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}, \mathrm{x}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{BC}+\mathrm{BD}$
$\mathrm{y}=\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}, \mathrm{y}^{\prime}=\mathrm{C}^{\prime} \mathrm{D}+\mathrm{CD}^{\prime}$
$\mathrm{z}=\mathrm{D}^{\prime}, \mathrm{z}^{\prime}=\mathrm{D}$
use w, $\mathrm{x}^{\prime}, \mathrm{y}, \mathrm{z}$ (7 terms)

	Product	Inputs					Outputs				
term	A	B	C	w	x	y	z				
A	1	1	-	-	-	1	-	-	-		
BC	2	-	1	1	-	1	1	-	-		
BD	3	-	1	-	1	1	1	-	-		
$\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$	4	-	0	0	0	-	1	-	-		
CD	5	-	-	1	1	-	-	1	-		
$\mathrm{C}^{\prime} \mathrm{D}^{\prime}$	6	-	-	0	0	-	-	1	-		
D^{\prime}	7	-	-	-	0	-	-	-	1		

7.23) Repeat problem 7.22 using a PAL.

Product Term	AND Inputs				Outputs
	A	B	C	D	
1	1	-	-	-	$\mathrm{w}=\mathrm{A}+\mathrm{BC}+\mathrm{BD}$
2	-	1	1	-	
3	-	1	-	1	
4	-	0	1	-	$\mathrm{x}=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}$
5	-	0	-	1	
6	-	1	0	0	
7	-	-	1	1	$\mathrm{y}=\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}$
8	-	-	0	0	
9	-	-	-	-	
10	-	-	-	0	$\mathrm{z}=\mathrm{D}^{\prime}$
11	-	-	-	-	
12	-	-	-	-	

7.24) The following is a truth table of a 3-input, 4-output combinational circuit. Tabulate the PAL programming table for the circuit and mark the fuse map in a PAL diagram similar to the one shown in Fig. 7-17.

$$
\mathrm{A}=\mathrm{yz} z^{\prime}+\mathrm{x} z^{\prime}+\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}
$$

$$
B=x y+y z+x^{\prime} y^{\prime}
$$

Product Term	AND Inputs				Outputs
	x	y	z	A	
1	-	1	0	-	$A=y z^{\prime}+x z^{\prime}+x^{\prime} y^{\prime} z$
2	1	-	0	-	
3	0	0	1	-	
4	0	0	-	-	$B=x^{\prime} y^{\prime}+x y+y z$
5	1	1	-	-	
6	-	1	1	-	
7	-	-	-	1	$C=A+x y z$
8	1	1	1	-	
9	-	-	-	-	
10	-	-	1	-	D $=\mathrm{z}+\mathrm{x}^{\prime} \mathrm{y}$
11	0	1	-	-	
12	-	-	-	-	

Page: 4

